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1. INTRODUCTION

Mu%ers and silencers used in industry usually contain very complex internal geometry,
such as extended inlet/outlet tubes, thin ba%es, and perforated tubes. In a recent paper, Wu
and Wan [1] proposed a direct mixed-body boundary element method (BEM) to model
mu%ers and silencers with thin and perforated internal components. The direct mixed-body
BEM eliminates the tedious zoning and interface matching steps in the multi-domain BEM.
To evaluate the transmission loss (TL), Wu and Wan [1] also used a so-called &&three-point
method'' [2] as an alternative to the traditional four-pole transfer matrix method [3]. The
three-point method requires only one single BEM run at each frequency, while the
traditional four-pole method requires two separate BEM runs. However, unlike the
four-pole method, the three-point method does not produce the four-pole transfer matrix.
The four-pole transfer matrix relates the acoustic variables at the inlet directly to the
acoustic variables at the outlet. This important property may allow a very large system to
be divided into smaller subsystems in series connection for analysis purposes. Since the
three-point method produces only the TL for the entire system, it can not be used for the
analysis of any subsystems. This is the major drawback of the three-point method.

From the system point of view, a method that can be applied to subsystems is still
preferred because real-world systems are usually too big to "t in one single computer model.
Dividing a large system into smaller subsystems for analysis purposes is always preferred.
To speed up the conventional four-pole method, Wu et al. [4] used an improved method to
obtain the four-pole transfer matrix. This improved method simply permutes the variables
used in the conventional four-pole transfer matrix in such a way that only one single BEM
matrix needs to be solved at each frequency. As a consequence, the improved four-pole
method is as fast as the three-point method in evaluating the TL. More importantly, the
improved method also produces the four-pole transfer matrix. The permuted four-pole
matrix is actually the impedance matrix and it can be easily converted back to the
conventional four-pole transfer matrix. It should be noted that such a conversion technique
was "rst proposed by Kim and Soedel [5}7] in a modal expansion method for
three-dimensional cavity problems, although the numerical bene"t of this conversion was
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not recognized then. The same conversion has also been used by Ji et al. [8] in evaluating
the TL for mu%ers with a mean #ow.

Even with the improved method to obtain the four-pole parameters, there are still two
problems with the four-pole transfer matrix approach. First, the four-pole transfer matrix is
only de"ned for systems (or subsystems) with a single inlet and a single outlet. For systems
(or subsystems) with multiple inlets/outlets, the transfer matrix relating the acoustic
variables at the inlets to the acoustic variables at the outlets may not be uniquely de"ned.
Second, for subsystems connected in parallel instead of in series, the simple matrix
multiplication operation on the transfer matrices is not valid anymore.

Alternative matrix formulations have been suggested by Frid [9], Eversman [10], and
Glav and Abom [11]. In particular, Frid [9] used a mobility matrix that relates the acoustic
pressure at the inlet and the outlet to the corresponding volume velocities. With the
mobility matrix formulation it is possible to easily assemble the mobility matrix for
a complicated network system.

In this paper, an approach called impedance matrix synthesis (IMS) is used along with
the BEM to evaluate the TL of multiply connected exhaust systems. The impedance
matrix is the inverse of the mobility matrix used in reference [9]. Actually, combining
the impedance matrices of substructures into a resultant impedance matrix has also been
used by Ji et al. [8] in the multi-domain BEM analysis. Like the transfer matrix
reported earlier by Tanaka et al. [12], the impedance matrix in Reference [8] was applied to
BEM mesh-dependant substructures to improve the e$ciency of the multi-domain BEM. In
this paper, the impedance matrix is used in a slightly di!erent way so that the matrix is no
longer a BEM mesh-dependent product, but rather a physical property of real subsystems.
That means the impedance matrix can even be measured or evaluated without using
the BEM.

In references [4, 8], the resultant impedance matrix for a two-port system was eventually
converted back to the conventional four-pole transfer matrix for the purpose of evaluating
the TL. Now it has become clear to the authors that such a conversion is unnecessary. The
TL can be directly evaluated from the resultant impedance matrix itself, regardless of the
number of outlets. What is more important is that the impedance matrix is much easier to
operate than the four pole transfer matrix for multiply connected network systems. In
addition, the impedance matrix approach is ideally suited to the BEM because only one
BEM matrix needs to be solved at each frequency, regardless of the number of inlets and
outlets in the subsystem under consideration.

Three test cases are given to demonstrate the impedance matrix approach. The "rst test
case is a simple expansion chamber with two outlets. This test case is to demonstrate how to
evaluate the TL directly from the impedance matrix. Note that the four-pole transfer matrix
is not de"ned for a system with two outlets. The second test case is a double-expansion
chamber with two external interconnecting tubes. This set case is to demonstrate how to use
the IMS to combine subsystems with multiple interconnections. The third test case is
similar to the second one except that the two interconnecting tubes are internal. All the
numerical results are veri"ed by experimental data.

2. DIRECT MIXED-BODY BEM

In this section, the direct mixed-body boundary integral formulation by Wu and Wan [1]
is brie#y reviewed. With reference to Figure 1, let S

r
, S

t
, and S

p
denote the regular, thin and

perforated surfaces respectively. The interior acoustic domain is denoted by X. Let n be the
unit normal vector. The unit normal vector on S

r
is directing into the interior acoustic



Figure 1. Surface de"nition used in the direct mixed-body BEM.
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domain. The unit normal vector on S
p

and S
t

can be directing into either side of the
thin/perforated surface. The side into which n is directing is called the positive side.

Let p denote the sound pressure, and v
n

denote the normal velocity of the surface. We

adopt the e`*ut convention in steady state linear acoustics, where i"J!1 and u is the
angular frequency. Assume the thin surfaces are rigid, and the direct mixed-body boundary
integral equations are [1, 4]
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where P is the collocation point, t is the free-space Green's function, o is the mean density
of the #uid, k is the wavenumber, and m is the non-dimensional transfer impedance [13] for
the perforated surface S

p
. In the above equations, p` is the sound pressure on the positive

side of S
t
or S

p
, and p~ is the sound pressure on the opposite side. The explicit expression for

t is

t"

e~*kr

r
, (3)

where r"DP!Q D , and Q is any integration point on the boundary. In equation (2), L/Lnp

means partial di!erentiation with respect to the coordinates of P in the normal direction of
P. Equations (1b), (2a), and (2b) are solved simultaneously for pressure on S

r
, and pressure

jump on S
t
and S

p
.

3. IMPEDANCE MATRIX SYNTHESIS

As shown in Figure 2, a simple network system that consists of a Y-shaped distributor
and two interconnected silencers is used as an example to demonstrate the impedance



Figure 2. A simple network system.
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matrix synthesis. The network system is divided into three subsystems by the two imaginary
cuts (dotted lines) as shown in the "gure. All the cuts are made at connecting tubes where
the acoustic variables are assumed constant over the tube cross-section. The sound pressure
and the particle velocity at the inlet are denoted by p

1
and v

1
respectively. At the two

outlets, p
5
v
5
, p

6
and v

6
are the corresponding acoustic variables. The variables at the cuts,

p
2
, v

2
, p

3
, v

3
, p

4
, and v

4
, are referred to as the internal variables. The directions of the

velocities are de"ned by the arrows shown in the "gure. It is noted that the four-pole
transfer matrix is not de"ned for the entire system or any of the three subsystems.

Without the four-pole transfer matrix, one can still de"ne an impedance matrix for each
subsystem as follows.

For subsystem 1 (Y-shaped distributor, one inlet and two outlets):
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For subsystem 2 (upper silencer, one inlet and two outlets),
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For subsystem 3 (lower silencer, two inlets and one outlet),
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Each column of the impedance matrix can be obtained by a BEM run with an appropriate
set of velocity boundary conditions at the inlets and outlets. For example, column one of
equation (4) is obtained by setting v

1
"1 and v

2
"v

3
"0 in the BEM model of subsystem 1.

Similarly, column 2 of equation (4) is obtained by setting v
2
"1 and v

1
"v

3
"0 in the
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BEM model, and column 3 by setting v
3
"1 and v

1
"v

2
"0. According to the reciprocal

theorem [14], if there is no bulk-reacting material or sound source inside the system, the
o!-diagonal terms of the impedance matrix should be either symmetric or antisymmetric,
depending on the de"nition of velocity direction (in or out). For example, a

12
"!a

21
and

a
13
"!a

31
because v

1
is in while v

2
and v

3
are out. On the other hand, a

23
"a

32
because

both v
1

and v
2

are out.
It is noticed that three di!erent BEM runs are needed to obtain the complete impedance

matrix of each subsystem. Nevertheless, for each subsystem, only one BEM matrix needs to
be decomposed at each frequency, because the three BEM runs share the same BEM
coe$cient matrix. The second and third BEM runs use only a di!erent velocity condition
than the "rst BEM run, and therefore, require only a a trivial back-substitution procedure.
Actually, the three BEM runs can be done simultaneously because the three right-hand side
vectors corresponding to the three di!erent sets of velocity boundary conditions may be
formed at the same time.

With the three subsystem impedance matrices ready, the next step is to combine the
matrices into a resultant impedance matrix for the combined system. To begin with, the
resultant impedance matrix is de"ned by

p
1

p
5

p
6

"

z
11

z
12

z
13

z
21

z
22

z
23

z
31

z
32

z
33

v
1

v
5

v
6

. (7)

It is clear that three di!erent boundary-value problems need to be solved in order to
determine the resultant impedance matrix. Without calling the BEM again, one can
synthesize the existing impedance matrices for the subsystems to obtain the impedance
matrix for the combined system. With v

1
, v

5
, and v

6
speci"ed, the unknowns are p
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, p
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, p

6
,

and the six internal variables (p
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, v
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, p

3
, v

3
, p

4
, v

4
), a total of nine. Notice that equations

(4}6) provide a total of nine equations for the nine unknowns. Assemble equations (4}6)
into a global 9]9 matrix equation. That is,
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Solve the above 9]9 matrix equation three times. For the "rst time, the boundary
conditions are v

1
"1, v

5
"0 and v

6
"0. For the second time, v

1
"0, v

5
"1 and

v
6
"0, and for the third time v

1
"0, v

5
"0 and v

6
"1. Each time pick up p

1
, p

5
, and

p
6

from the solution vector, and the impedance matrix components are thus
obtained. Use the reciprocal theorem, if applicable, to check the symmetry or antisymmetry
of the o!-diagonal terms. For this example problem, z
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, z

13
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z
23
"z

32
.



356 LETTERS TO THE EDITOR
4. TRANSMISSION LOSS

The TL can be directly evaluated from the resultant impedance matrix. Two
con"gurations are considered in this section to demonstrate the procedure. The "rst
con"guration has one single inlet and one single outlet. The second con"guration has one
inlet and two outlets.

4.1. TL FOR SYSTEMS WITH ONE INLET AND ONE OUTLET

For a two-port system with one inlet and one outlet, the TL can be easily obtained by the
traditional four-pole transfer matrix. Here we just demonstrate an alternative way to
evaluate the TL directly from the impedance matrix. For a two-port system, the impedance
matrix is de"ned by
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where subscript 1 refers to the inlet, and 2 refers to the outlet. The sound pressure p at any
point inside the inlet tube is composed of an incident wave p

i
and a re#ected wave p

r
. That

is,
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where P
i
and P

r
are the complex amplitudes of the incident and re#ected waves, respectively,

and x is the positive axial direction along the tube. The velocity v in the x direction is
obtained from the momentum equation
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Carry out the di!erentiation and it can be shown that at any point inside the tube
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Assume anechoic termination at the outlet end. Then there is only one outgoing wave (or
transmitted wave) p

t
in the outlet tube, and the velocity in the outlet tube is simply v"p

t
/oc.

Apply the above equations to the inlet and the outlet positions, noting that the #uid
density and the speed of sound may change values due to possible temperature gradient.
Hence,
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Substituting equations (13)} (16) into the impedance matrix equation, equation (9) becomes
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Solve equation (17) and (18) for p
i
and p

r
in terms of p

t
. Then "nd the ratio between p

i
and p

t
:
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Finally, the TL can be evaluated by
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where= denotes the power, and S
1

and S
2

are the cross-sectional areas of the inlet and
outlet tubes respectively.

4.2. TL FOR SYSTEMS WITH ONE INLET AND TWO OUTLETS

For systems with one inlet and two outlets, the impedance matrix is de"ned by
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where subscript 1 refers to the inlet, and 2 and 3 refer to the two outlets. Assume anechoic
termination at both outlet ends. Let p

t1
denote the transmitted wave in the "rst outlet tube,

and p
t2

denote the transmitted wave in the second outlet tube. Follow the same procedure
as in the one-outlet case. Equation (21) becomes
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First eliminate p
i
!p

r
from equations (23) and (24); then, p
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is related to p
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by a factor e

3
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Substitute this relationship into equations (22) and (23) to solve for p
i
and p
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in terms of p
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.
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where
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Finally, the TL is evaluated by
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where S
1
, S

2
, and S

3
are cross-sectional areas of the inlet and outlets, and the pressure ratio

is evaluated by equation (28).

5. TEST CASES

Three test cases are presented in this section to demonstrate the IMS approach. The "rst
test case is a simple expansion chamber with one inlet and two outlets. The geometry of the
expansion chamber is given in Figure 3. Since this test case has only one system, there is no
synthesis involved. The impedance matrix of the chamber is evaluated by the BEM and the
TL is evaluated by equation (31). Figure 4 shows the comparison between the TL curve
evaluated by the impedance matrix approach and the experimental TL data. It can be seen
that the numerical result compares fairly well with the experimental data.

The second test case is a double expansion chamber with two interconnecting tubes.
The geometry of the problem is showed in Figure 5. To apply the IMS, the system is cut into
two subsystems along the dotted line (A}A). The "rst subsystem has one inlet and two
outlets. The second subsystem has two inlets and one outlet. The impedance matrix for each
subsystem is obtained separately by the BEM. Then the IMS is applied to combine the
matrices into a resultant impedance matrix for the whole system. The TL is evaluated by
equation (20). Figure 6 shows the comparison between the IMS result and the experimental
data. Again, very good agreement is observed.
Figure 3. Geometry of the "rst test case, R"0)1016 m, r"0)0254 m, >"0)0508 m, ¸"0)4572 m.



Figure 4. Comparison between the numerical result (} } }) and the experimental data (**) for the "rst test case.

Figure 5. Geometry of the second test case, R"0)1016 m, r"0)0241 m, >"0)0508 m, ¸1"0)1524 m,
¸2"0)3048 m.
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The third test case is similar to the second test case except that the two interconnecting
tubes are internal. The geometry of the problem is shown in Figure 7. A cut along the dotted
line A}A is made to divide the system into two subsystems. Each subsystem still contains
some thin surfaces due to the extended tubes. The comparison between the IMS result and
the experimental data is shown in Figure 8. Very good comparison is observed.

6. CONCLUSIONS

The impedance matrix is used to replace the conventional four-pole transfer matrix for
the BEM analysis of mu%ers and silencers. The impedance matrix provides more #exibility



Figure 6. Comparison between the numerical result (} } }) and the experimental data (**) for the second test
case.

Figure 7. Geometry of the third test case, R"0)1016 m, r"0)0241 m, >"0)0508 m, ¸1"0)1524 m,
¸2"0)3048 m.
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in combining subsystems into a multiply connected network system. The approach is very
e$cient because for each subsystem only one BEM matrix needs to be solved at each
frequency.

The TL can be directly evaluated from the resultant impedance matrix, regardless
of the number of outlets. Formulas for evaluating the TL are derived. Three test cases
are studied and numerical results have shown very good agreement with experimental
data.



Figure 8. Comparison between the numerical result (} } }) and the experimental data (**) for the third test case.
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